Undergraduate Examination 2018

Semester - III (CBCS)

Mathematics
 Generic Elective Course: GEC-3 (Differential Equations and its applications)

Time: Three Hours
Questions are of value as indicated in the margin. Notations and symbols have their usual meanings.

Group-A

Answer any four questions.

$$
10 \times 4=40
$$

1. a) Construct a differential equation by elimination of arbitrary constants a and b from the equation $a x^{2}+b y^{2}=1$.
Also find the order and degree of the differential equation.
$2+1 / 2+1 / 2$
b) Find the general solution of the following differential equation by using the method of variation of parameters:

$$
\frac{d^{2} y}{d x^{2}}+y=\sec x
$$

c) Examine for the singular solution of the differential equation

$$
9\left(\frac{d y}{d x}\right)^{2}(2-y)^{2}=4(3-y) .
$$

2. a) Show that e^{x}, e^{-x} and $e^{2 x}$ are three linearly independent solutions of

$$
\left(\frac{d^{3} y}{d x^{3}}-2 \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-2 y\right)=0 .
$$

Hence find the general solution.
b) Solve the simultaneous differential equations

$$
\begin{aligned}
& \frac{d x}{d t}-7 x+y=0 \\
& \frac{d y}{d t}-2 x-5 y=0
\end{aligned}
$$

c) Reduce the differential equation

$$
\begin{aligned}
& \quad x^{2}\left(y-x \frac{d y}{d x}\right)=y\left(\frac{d y}{d x}\right)^{2} \text { to Clairaut's form by the substitutions } u=x^{2} \text { and } \\
& v=y^{2} .
\end{aligned}
$$

3. Find the general solution of the following differential equations:
a) $x^{2} p^{2}+x y p-6 y^{2}=0$.
b) $y=x+p^{3}$.
c) $y^{2} \log y=x y p+p^{2}$.
4. a) Examine whether the equation

$$
\left(a^{2}-2 x y-y^{2}\right) d x-(x+y)^{2} d y=0 \text { is exact. }
$$

If it be exact then solve it.
b) Solve the following differential equations:
i) $\log \left(\frac{d y}{d x}\right)=a x+b y$.
ii) $\left(x^{2}+1\right) \frac{d y}{d x}+4 x y=\frac{1}{\left(x^{2}+1\right)^{2}}$.
iii) $y^{3} \frac{d^{2} y}{d x^{2}}=5$.
5. a) Find the orthogonal trajectories of the family of concentric circles centred at the origin.

2
b) Find the family of curves which make an angle $\pi / 4$ with the hyperbolas $x y=c$. 3
c) Check whether the differential equation

$$
x^{2} y^{\prime \prime \prime}+4 x y^{\prime \prime}+\left(x^{2}+2\right) y^{\prime}+3 x y=2
$$

is exact.
If not, find the value of m so that x^{m} is an integrating factor of the above differential equation. Obtain its first integral.
$1+2+2$
6. a) Using the substitutions $y^{2}=v-x$, reduce the equation $y^{3} \frac{d y}{d x}+x+y^{2}=0$ to the homogeneous form and hence solve it.
b) Find a particular integral of the differential equation

$$
\begin{equation*}
y^{\prime \prime \prime}-5 y^{\prime \prime}+8 y^{\prime}-4 y=e^{2 x}+e^{x}+\sin x \tag{2}
\end{equation*}
$$

c) Convert the differential equation

$$
(1+2 x)^{2} \frac{d^{2} y}{d x^{2}}-6(1+2 x) \frac{d y}{d x}+16 y=8(1+2 x)^{2}
$$

to the differential equation with constant coefficients and hence solve it.

Group-B

Answer any two questions.

1. a) Find the partial differential equation of all spheres of unit radius with centres on the $y-z$ plane. Obtain its degree and order. State the nature of the equation. $3+1+1$
b) Find the partial differential equations of all planes which are at a constant distance from the origin. Find the partial differential equation by elimination of arbitrary function f from $z=x+y+f(x y)$.
2. a) Find the surface which intersects the surfaces of the one-parametric system $z=3 \operatorname{cxy}\left(x^{2}+y^{2}\right)$ orthogonally and which passes through the hyperbola $x^{2}-y^{2}=a^{2}, z=0$.
b) Find the general integral of the partial differential equation $2 x\left(y+z^{2}\right) p+y\left(2 y+z^{2}\right) q=z^{3}$. Write a short note on geometrical interpretation of the partial differential equation

$$
P(x, y, z) z_{x}+Q(x, y, z) z_{y}=R(x, y, z) .
$$

3. a) Show that $z=a x+b y+a^{2}+b^{2}$ is a complete integral of the partial differential equation $z=p x+q y+p^{2}+q^{2}$. Hence obtain the singular integral, if any, and particular integral assuming $a=b$.
$2+1 \frac{1}{2}+1 \frac{1}{2}$
b) Show that the partial differential equation $p^{2} x^{2}+q^{2} y^{2}=z^{2}$ can be transformed to the form $f(p, q)=0$ by using suitable transformation. Hence solve the equation using Charpit's rule.
